solar power


Solar power
Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power(CSP). Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaics convert light into electric current using the photoelectric effect.

Generating Electricity
When sunlight hits the cell, it displaces electrons from the semiconductor. The positive and negative charge allow for the electrons to be controlled and directed through a cable.

In 1839, French scientist Edmund Becquerel discovered that certain materials would give off a spark of electricity when struck with sunlight. This photoelectric effect was used in primitive solar cells made of selenium in the late 1800s. In the 1950s, scientists at Bell Labs revisited the technology and, using silicon, produced solar cells that could convert four percent of the energy in sunlight directly to electricity. Within a few years, these photovoltaic (PV) cells were powering spaceships and satellites.


The most important components of a PV cell are two layers of semiconductor material generally composed of silicon crystals. On its own, crystallized silicon is not a very good conductor of electricity, but when impurities are intentionally added—a process called doping—the stage is set for creating an electric current. The bottom layer of the PV cell is usually doped with boron, which bonds with the silicon to facilitate a positive charge (P). The top layer is doped with phosphorus, which bonds with the silicon to facilitate a negative charge (N).


The surface between the resulting "p-type" and "n-type" semiconductors is called the P-N junction (see the diagram below). Electron movement at this surface produces an electric field that only allows electrons to flow from the p-type layer to the n-type layer. 





When sunlight enters the cell, its energy knocks electrons loose in both layers. Because of the opposite charges of the layers, the electrons want to flow from the n-type layer to the p-type layer, but the electric field at the P-N junction prevents this from happening. The presence of an external circuit, however, provides the necessary path for electrons in the n-type layer to travel to the p-type layer. Extremely thin wires running along the top of the n-type layer provide this external circuit, and the electrons flowing through this circuit provide the cell's owner with a supply of electricity

In brief, when sunlight hits the cell, it displaces electrons from the semiconductor. The positive and negative charge allow for the electrons to be controlled and directed through a cable.

Conversion:
After the electricity is created by the solar cells, it passes through an electrical inverter, which changes the electricity from direct current to alternating current.



Energy storage methods:

Solar energy is not available at night, making energy storage an important issue in order to provide the continuous availability of energy.[88] Both wind power and solar power are intermittent energy sources, meaning that all available output must be taken when it is available and either stored for when it can be used, or transported, over transmission lines, to where it can be used. Wind power and solar power tend to be somewhat complementary, as there tends to be more wind in the winter and more sun in the summer, but on days with no sun and no wind the difference needs to be made up in some manner.[89] The Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind,biogas and hydrostorage to provide load-following power around the clock, entirely from renewable sources.[90]
Solar energy can be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 TJ in its 68 m³ storage tank, enough to provide full output for close to 39 hours, with an efficiency of about 99%.[91]
Off-grid PV systems have traditionally used rechargeable batteries to store excess electricity. With grid-tied systems, excess electricity can be sent to the transmission grid. Net metering programs give these systems a credit for the electricity they deliver to the grid. This credit offsets electricity provided from the grid when the system cannot meet demand, effectively using the grid as a storage mechanism. Credits are normally rolled over month to month and any remaining surplus settled annually.[92]
Pumped-storage hydroelectricity stores energy in the form of water pumped when surplus electricity is available, from a lower elevation reservoir to a higher elevation one. The energy is recovered when demand is high by releasing the water: the pump becomes a turbine, and the motor a hydroelectric power generator.
Artificial photosynthesis involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to producehydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions.
Solar power is seasonal, particularly in northern/southern climates, away from the equator, suggesting a need for long term seasonal storage in a medium such as hydrogen. The storage requirements vary and in some cases can be met with biomass.

Transmission and distribution:
Electric power transmission is the process by which electricity is transported over long distances to consumers.
The energy is produced at a relatively low voltage between about 2.3 kV and 30 kV, depending on the size of the unit. The generator terminal voltage is then stepped up by the power station transformer to a higher voltage (115 kV to 765 kV AC, varying by the transmission system and by country) for transmission over long distances.
At the substations, transformers reduce the voltage to a lower level for distribution to commercial and residential users. This distribution is accomplished with a combination of sub-transmission (33 kV to 132 kV) and distribution (3.3 to 25 kV). Finally, at the point of use, the energy is transformed to low voltage (varying by country and customer requirements).
Transmission towers are the most visible component of the power transmission system. Their function is to keep the high-voltage conductors (power lines) separated from their surroundings and from each other. A variety of tower designs exist that generally employ an open lattice work or a monopole, but generally they are very tall (a 500 kv tower might be 150 feet tall with crossarms as much as 100 feet wide), metal structures.

ليست هناك تعليقات

يتم التشغيل بواسطة Blogger.